Upgrade your Infinet 5GHz Radio Links

How to Upgrade your Infinet Radio Links

Infinet Radio Links 5GHz unlicensed

Why upgrade your Infinet Radio link?

Infinet have announced to partners that due to the geopolitical issue between Russia and Ukraine that Infinet exports will cease and concentrate on the domestic market only, therefore cannot supply overseas customers for their entire range of radio links.   It’s always sad to see a long established vendor exit global markets, and this move means many radio link users will have to look for alternatives.
Many users own radio links which are older and sometimes problematic.  Often, users require higher reliability, uptime, capacity or distance than their older radio links can provide.

The Need for Reliability and High Availability

Modern IP networks demand higher capacity and uptime, and as radio links are installed outdoors often in harsh conditions where they age faster than indoor mounted IT equipment such as switches and routers, which are installed in nice airconditioned environments.   Modern Carrier Class wireless equipment is designed for all-outdoor use including harsh environments and can ensure ultra-high availability and reliability in practical use.

Alternatives to Infinet and 5GHz radios

There are many alternatives available including Carrier Class radio from other vendors, radio links with 10Gbps+ capacity, Microwave links and MMW radio.  These have different characteristics, capabilities and price points.  Modern links can offer up to 40Gbps capacity and for low-end solutions, MIMO radios at lower price points than high cost MIMO radio for sites where budgets are tight.

If the customer requires a direct replacement radio link, there are some trusted MIMO radio vendors currently available with reliable shipping products.

Other radio vendors currently offering carrier grade radio:

Infinet – Manufacturer information

  • Infinet (based in Russia) is a Manufacturer of radio bridges/links
  • Built for line of site (LOS) with ranges suitable up to several km
  • MIMO radios using OFDM modulation
  • Licence free operation or light-licensed technology

Infinet state:

Infinet Wireless is in a unique position, being one of the largest privately owned Broadband Wireless Access (BWA) development and manufacturing companies in the world. Since its foundation, Infinet Wireless has maintained consistent, organic growth primarily through its technology innovation and its ability to deliver complete customer satisfaction – no matter what. By listening to its customers over the past 20 years and using their feedback and expertise in our research and product development, we have created a range of fixed wireless connectivity solutions that are a perfect fit – and therefore a natural choice – for global communication providers, corporations and governments who require uncompromised connectivity.

Upgrading from Infinet radio links

Infinet state that radio models are advanced radio links compared to others in the industry, and have been deployed worldwide. However, now are no longer available on the global market.

Upgrading from Infinet Radio Wireless Bridge

Infinet state that their Radio Wireless Bridge links offer competitive pricing and value for various distances . Utilizing MIMO OFDM technology, these radio bridges are generally half duplex connectivity.

R5000-Mmx/5.300.2x200.2x23 - InfiLINK 2x2 - Products - Infinet Wireless
Infinet R5000

Disclaimer

The technical specifications listed above are those advertised by the manufacturer.  No warranty is made to the accuracy of this information, which may vary widely in practical installations.  Many vendors are known to exaggerate or mis-state the capability of the equipment which they offer.

For More Information on Wireless Upgrades

If you would like more information on upgrading Infinet radio link solutions please Contact Us and our experienced team of wireless experts will be delighted to assist.

Upgrade your Lightpointe MMW Millimeter Wave Links

How to Upgrade your Lightpointe MMW Millimeter Wave Links

Lightpointe Airebeam E-band or V-band MMW Millimeter Wave Link
Lightpointe MMW Airebeam Millimeter Wave Link

Why upgrade your Lightpointe MMW link?

Lightpointe have announced by email that they are closing down operations and therefore cannot support their entire range of MMW links.   It’s always sad to see a long established vendor close down, and means many Millimeter Wave link users will have to look for alternatives.
Many users own MMW links including Lightpointe  which are old and sometimes problematic.  Often, users require higher reliability, uptime, capacity or distance than their older Millimeter Wave links can provide.

The Need for Reliability and High Availability

Modern IP networks demand higher capacity and uptime, and as MMW links are installed outdoors often in harsh conditions where they age faster than indoor mounted IT equipment such as switches and routers, which are installed in nice airconditioned environments.   Modern Carrier Class wireless equipment is designed for all-outdoor use including harsh environments and can ensure ultra-high availability and reliability in practical use.

Alternatives to Lightpointe and MMW

There are many alternatives available including Carrier Class MMW from other vendors, MMW links with 10Gbps+ capacity, Microwave links and MIMO radio.  These have different characteristics, capabilities and price points.  Modern links can offer up to 40Gbps capacity and for low-end solutions, MIMO radios at lower price points than MMW for sites where budgets are tight.

If the customer requires a direct replacement MMW link, there are some trusted MMW vendors currently available with reliable shipping products.

Other MMW vendors currently offering carrier grade MMW:

Lightpointe – MMW Millimeter Wave – E-band and V-band links – Manufacturer information

Established in 1998, Lightpointe  provides optical communications at the speed of light which operate license-free. With products capable of sending up to 10 Gbps full duplex of data, Lightpointe offers reliable, fibre-optic connections without the need for expensive physical fibre.

Lightpointe – Manufacturer information

  • Lightpointe (based in USA) is a Manufacturer of Millimeter Wave bridges/links
  • Built for line of site (LOS) with ranges suitable up to 1-8km
  • Ultra secure connections using narrow beams of light are secure from RF packet sniffers
  • Reliable availability with five nines availability
  • Licence free operation or light-licensed technology

Upgrading from Lightpointe Millimeter Wave E-band

Lightpointe state that AireBeam models are the most advanced millimeter wave links in the industry, bFor customers wanting the absolute longest range and highest availability, the Airebeam is the answer. Your data will fly between buildings using E-band or V-band frequencies.

  • MMW
  • E-band or V-band
  • 1Gbps or 10Gbps full duplex
  • RJ45, PoE or Fibre Interfaces
  • Recommended for distances 1km up to 8km or more

Upgrading from Lightpointe Aire X-Stream Wireless Bridge

Lightpointe state that the LightPointe Aire X-Stream Millimeter Wave Wireless Bridge offers highly competitive pricing and extreme value for various distances . Utilizing an advanced V-band or E-band technology, these bridges transmit and receive data simultaneously for full duplex connectivity. Each side of the link can be ordered in a 1,000 Mbps or 10Gbps configuration.

  • Aire X-Stream System
  • 1Gbps or 10Gbps
  • PoE or Fibre Optic
  • Recommended for 1-8km or more
Upgrade Geodesy Gigabit Wireless FSO Free Space Optic Laser Link
Gigabit Wireless Technologies

Disclaimer

The technical specifications listed above are those advertised by the manufacturer.  No warranty is made to the accuracy of this information, which may vary widely in practical installations.  Many vendors are known to exaggerate or mis-state the capability of the equipment which they offer.

For More Information on Wireless Upgrades

If you would like more information on upgrading a Lightpointe MMW Millimeter Wave solutions please Contact Us and our experienced team of wireless experts will be delighted to assist.

Gigabit Wireless MMW Radios Deployed in London

Corporate LAN connections in London using CableFree E-band MMW Radios

CableFree 1Gbps E-band MMW radios have been deployed for corporate customers above the busy streets of London as a high speed and cost-effective alternative to Fibre Optic Leased Lines.

CableFree E-Band MMW Link Installed in London
CableFree E-Band MMW Link Installed in London in 2018

The links carry full-speed LAN traffic for a major customer as an alternative to Fibre Optics.

Major Benefits of Wireless 1Gbps MMW Links

Compared to Leased Lines and Fibre Optics, wireless E-band links offer many benefits including:

  • Immediate availability: no waiting for digging, trenches or wayleaves
  • Fast to install: typically 3 hours to complete
  • One-off cost for asset purchase: No ongoing lease for service
  • Low-cost “Light License” at only GBP 50 per year (USD 75 in USA) protects “first use” of spectrum
  • Designed & Proven to be highly reliable in all conditions
  • Portable Asset: can be moved to other sites when needed
  • No disruption to link caused by digging or 3rd party maintenance work
  • Easy to maintain: just one box either end of link, fully manageable

Free Link Design and Consultancy Service

Our team offer a Free Link Design service direct from ourselves – the vendor – to verify reliable operation before purchase and deployment.  Based on 22 years experience of Broadband Fixed Wireless equipment design and installation, the experience of our Wireless team is unparalleled.

Available and Shipping

CableFree E-Band MMW Links are available today with up to 10Gbps per radio aggregating to 40Gbps full duplex capacity.

For Further Information

Please Contact Us

10Gbps MMW Links installed for Safe City Applications

CableFree 10Gbps MMW links have been installed for Safe City applications

Using the latest 10Gbps Millimeter Wave wireless technology, the links connect Safe City customer sites with a full 10Gbps (10Gig-E) full duplex capacity, with no compression or slow-down.

10Gbps MMW Links installed in the Middle East
10Gbps MMW Links installed for Safe City Applications

CableFree has pioneered high speed 10 Gigabit Millimeter Wave (MMW) technology to connect sites where fibre optics are unavailable, too slow to provision, too expensive or at risk of damage. In busy cities, fibre optics is usually installed in ducts underground which are prone to disruption when digging or building works take place.

This client had already installed fibre optics for major CCTV backbones around the city. However, 3rd party building works disrupted the ducts severing the fibres, causing major outage in the network and loss of CCTV coverage – putting citizens at risk.

10Gbps MMW Links installed in the Middle East
10Gbps MMW Links installed for Safe City Applications

CableFree 10Gbps Millimeter Wave links offer an ideal alternative to fragile fibre optics: the radio units are installed on sites owned by the customer, bringing the full network under user control and management. The units are typically mounted on building rooftops well away from street-level disruption, which are easy to access, secure and defend. MMW wireless links can be installed in hours, not weeks, and at a tiny fraction of the cost of trenches and ducts for fibre optics.

Reliable operating distances of 5-8km depending on climatic region are ideal for city-scale networks. A full range of planning tools allows users to predict performance prior to purchase or installation. The E-band (70-80GHz) frequencies are available in many countries with “light license” and are uncongested, with narrow “pencil beams” allowing dense re-use of the spectrum with no interference between links or users. The narrow beams make such link are inherently secure, with proprietary signals and encoding.

ACM Automatic Coding Modulation for 10Gbps MMW Links
ACM Automatic Coding Modulation for 10Gbps MMW Links

For long links, the Adaptive Coding and Modulation feature enables the MMW link to dynamically adjust modulation in high rainfall conditions to ensure link uptime, capacity and range are maximised. For shorter links and long links in low rainfall regions, the links retain 10Gbps at all times.

10Gbps MMW links are a movable asset: if the network requirements change, or different sites require connecting, the links can be moved to the new sites immediately, retaining all the investment in infrastructure. For Special Events and Disaster Recovery, temporary links can be deployed using generator or alternative “off grid” (Solar + Battery) power if no AC power is available on sites. The units can be mounted on tripods or stationary vehicles as required for rapid deployment.

ACM Automatic Coding Modulation for 10Gbps MMW Links
ACM Automatic Coding Modulation for 10Gbps MMW Links

For mobile operators, advanced features such as IEEE 1588v2, SyncE and management are included which make CableFree MMW ideal for RAN backhaul for 4G & 5G networks. CableFree 10Gbps MMW is upgradable to 20Gbps and 40Gbps with “stacking” giving the very highest throughput in the wireless industry, comparable to fibre optic backbone networks.

For more information please visit the CableFree website or contact our expert team:

www.cablefree.net/10g

Gigabit Wireless: CableFree MMW links deployed in the UAE

Gigabit Wireless Metro Networks: CableFree MMW links deployed in the UAE

CableFree MMW Link in UAE - night

CableFree has deployed Gigabit Wireless MMW links for Public Safety networks in the UAE with regional partner CDN (Computer Data Networks). For this project a number of 1Gbps MMW links have been implemented to upgrade and extend existing network infrastructure for Safe City applications.

CableFree Millimeter Wave (MMW) links offer up to 10Gbps Full Duplex capacity and are proven to operate well in the harsh climate and conditions in regions such as the UAE, including recent record summer temperatures. CableFree worked closely with CDN to ensure high uptime and availability are ensured throughout the network.

CableFree MMW Link in UAE

CableFree MMW is a proven and robust high speed technology for Line of Sight links.  High frequency microwave signals between 60 and 90GHz have “pencil beam” properties that avoid any interference and enable dense deployment in busy urban areas.
Applications for Millimeter Wave include 4G/LTE Mobile Backhaul, Safe Cities, Government, Corporate CCTV and ISP backbones.
Distances up to 5-15km can be deployed reliably: CableFree provide a full range of planning tools to enable customers to plan for high availability even in high rainfall regions.

CableFree MMW Link in UAE

CableFree MMW links are ideal for implementing wireless networks in many regions and can upgrade existing congested unlicensed and licensed microwave links, and extend the reach of fibre optic cabling.  The links are rapid to deploy within hours and can provide permanent, temporary or disaster-recovery scenarios, including resilient backup to fragile fibre optic cables and leased lines.

For more information on Millimeter Wave and Wireless Metro Networks please contact the CableFree team:
sales@cablefree.net

E-band MMW Licensing in the UK by OFCOM

E-band Regulation in the UK by OFCOM

On Dec. 16 2013, Ofcom—the UK telecom regulator—announced a new approach for the use of E-band wireless communications in the United Kingdom.

To summarize, the new approach, which is available for licensing after Dec. 17, 2013, splits the band into two segments. Ofcom will coordinate the lower segment of 2GHz, while the upper segment of 2.5GHz will remain self-coordinated as per the prior policy.

The segment Ofcom coordinates will follow the usual regulatory processes for all the other fixed link bands it oversees. Moreover, OFCOM has already updated all the relevant documents and forms to accommodate E-band. While wireless vendors would have preferred the larger portion of spectrum to have been granted to the Ofcom-coordinated process, we welcome this new arrangement because it provides an option for greater security and peace of mind to operators in terms of protection from interference than was envisaged for the previous all self-coordinated spectrum regime.

Latest E-Band regulation by OFCOM

For a more detailed look at the new E-band arrangement, Figure 1 shows the Ofcom-coordinated section sitting in the lower half of both the 71-76GHz and 81-86GHz bands thus allowing for the deployment of FDD systems in line with ECC/REC(05)07.

CableFree MMW E-band OFCOM Allocation

Figure 1: Segmented Plan for Mixed Management Approach (click on figures to enlarge)

In terms of channelization within the Ofcom-coordinated block, the regulator announced that it would permit 8 x 250MHz channels, 4 x 500MHz channels, 1 x 750MHz channel and 1 x 1000MHz channel as per ECC/REC(05)07. Ofcom also stated that 62.5MHz and 125MHz channels will be implemented as soon as the relevant technical standards, etc., from ETSI are published. Figure 2 shows the Ofcom channel plan:

CableFree MMW OFCOM E-band Permitted Channelisations

Figure 2: Ofcom Permitted E-band Channelizations

Regarding equipment requirements, Ofcom stated that it will allow equipment that meets the appropriate sections of EN 302 217-2-2 and EN 302 217-4-2. This includes the antenna classes (e.g., classes 2-4) that will allow the deployment of solutions with flat panel antennas. We welcome this approach and hopes that other regulators—notably the FCC in terms of antenna requirements—currently considering opening up and/or revising their rules for E-band adopt similar approaches.

The license fees for the self-coordinated segment remains at £50 per link per annum, whereas in the Ofcom-coordinated segment the fees are bandwidth based as reflected in Figure 3:

Notwithstanding the current fees consultation process that Ofcom is undertaking, these “interim fees” will remain in place for five years, after which time the results of the fees review may mean that they will be amended.CableFree MMW E-band OFCOM Fees

Figure 3: Ofcom Bandwidth-based Fees

Also because of responses received during the consultation process, within the self-coordinated block, Ofcom will now require the following additional information for the self-coordination database: antenna polarization (horizontal, vertical or dual), ETSI Spectrum Efficiency Class and whether the link is TDD or FDD.

OFCOM MMW E-band Allocation

 

Introduction to Millimeter Wave Technology

Introduction to Millimeter Wave Technology

CableFree Millimeter Wave MMW Link
CableFree Millimeter Wave (MMW) Link

Millimeter Wave, also know as MMW or Millimetre Wave technology is being rapidly adopted for users ranging from enterprise level data centres to single consumers with smart phones requiring higher bandwidth, the demand for newer technologies to deliver these higher data transmission rates is bigger than ever before.

A wide range of technologies exist for the delivery of high throughput, with fibre optic cable considered to be the highest standard. However, fibre optics is not unmatched, especially when all considering economic factors. Millimeter wave wireless technology offers the potential to deliver bandwidth comparable to that of fibre optics but without the logistical and financial drawbacks of the deployments.

Millimeter waves represent the RF Signal spectrum between the frequencies of 30GHz and 300GHz with a wavelength between 1 – 10 millimetres but in terms of wireless networking and communications equipment, the name Millimeter Wave generally corresponds to a few select bands of radio frequencies found around 38, 60 and, more recently, the high potential 70 and 80 GHz bands that have been assigned for the public domain for the purpose of wireless networking and communications.

Commercial Millimeter Wave (MMW) links from CableFree feature high performance, reliable, high capacity wireless networking with latest generation features.

MM Wave Spectrum

Millimeter Wave MMW Spectrum
Millimeter Wave MMW Spectrum

In the UK, there have been 3 frequency bands that have been allocated for commercial Millimeter Wave usage, these are as follows:

57 – 66GHz: The 60GHz Millimeter Wave Band or V-Band is governed by OFCOM for licensed operation. The large amount of signal absorption via atmospheric oxygen and tight regulations make this frequency band more suited to short range, Point-to-Point and Point-to-Multipoint Millimetre Wave solutions. Between 57 – 64GHz the band is licensed and regulated but from 64 – 66GHz the band is unlicensed and self coordinated.

71 – 76GHz and 81 – 86GHz: The 70GHz and 80GHz Millimeter Wave Bands or E-Bands are governed by OFCOM for licensed operation only and are regarded to be the most suited band for Point-to-Point and Point-to-Multipoint, Millimeter Wave Wireless Networking and communication transmission. Each band has a 5GHz spectral range available which totals to be more than all other assigned frequency bands added together. Each 5GHz range can act as a single contiguous wireless transmission channel allowing very efficient use of the whole band and in turn these result in high throughput speeds from 1 to 3 Gbps whilst only using simple modulation techniques such as OOK (On-Off-Keying) or BPSK (Binary Phase Shift Keying). These throughput speeds are substantially higher than those found in lower frequencies using much more complex and advanced orders of modulation so even higher throughput speeds should be achieved with Millimetre Wave devices when utilising the same advanced techniques. It should be only a matter time before market demand brings these to the forefront.

In the US, an additional band is available as well as the above which is:

92 – 95GHz: The 94GHz Millimeter Wave Band or W-Band is governed by the FCC Part 15 for unlicensed operation also but only for indoor usage. It may also be used to outdoor Point-to-Point applications following the FCC Part 101 regulations but due to a range between 94 – 94.1GHz being excluded, the band is less spectrally efficient than the others.

The 71-76, 81-86 and 92-95 GHz bands are also used for point-to-point high-bandwidth communication links. These frequencies, as opposed to the 60 GHz frequency, do not suffer from the effects of oxygen absorption, but require a transmitting license in the US from the Federal Communications Commission (FCC). There are plans for 10 Gbit/s links using these frequencies as well. In the case of the 92–95 GHz band, a small 100 MHz range has been reserved for space-borne radios, making this reserved range limited to a transmission rate of under a few gigabits per second.

The band is essentially undeveloped and available for use in a broad range of new products and services, including high-speed, point-to-point wireless local area networks and broadband Internet access. WirelessHD is another recent technology that operates near the 60 GHz range. Highly directional, “pencil-beam” signal characteristics permit different systems to operate close to one another without causing interference. Potential applications include radar systems with very high resolution.

The upcoming Wi-Fi standard IEEE 802.11ad will run on the 60 GHz (V band) spectrum with data transfer rates of up to 7 Gbit/s.

Uses of the millimeter wave bands include point-to-point communications, intersatellite links, and point-to-multipoint communications.

Because of shorter wavelengths, the band permits the use of smaller antennas than would be required for similar circumstances in the lower bands, to achieve the same high directivity and high gain. The immediate consequence of this high directivity, coupled with the high free space loss at these frequencies, is the possibility of a more efficient use of the spectrum for point-to-multipoint applications. Since a greater number of highly directive antennas can be placed in a given area than less directive antennas, the net result is higher reuse of the spectrum, and higher density of users, as compared to lower frequencies. Furthermore, because one can place more voice channels or broadband information using a higher frequency to transmit the information, this spectrum could potentially be used as a replacement for or supplement to fiber optics.

Performance

Bandwidth & Scalable Capacity

CableFree Millimeter Wave MMW Link
CableFree Millimeter Wave MMW Link

The main benefit that Millimeter Wave technology has over lower RF frequencies is the spectral bandwidth of 5GHz being available in each of the E-Band ranges, resulting in current speeds of 1.25Gbps Full Duplex with potential throughput speeds of up to 10Gbps Full Duplex being made possible. Once market demand increases and better modulation techniques are implemented, spectral efficiency of the equipment will improve allowing the equipment to meet the higher capacity demands of prospective future networks.

Whereas low frequency, microwave signals have a wide beamwidth angle which reduces the reuse of transmission of the same signal within the local geographic area, Millimeter Wave signals transmit in very narrow, focused beams which allows for multiple deployments in tight proximity whilst using the same frequency ranges. This allows a density of around 15 times more when comparing a 70GHz signal to a 20GHz example making Millimeter Wave ideal for Point-to-Point Mesh, Ring and dense Hub & Spoke network topologies where lower frequency signals would not be able to cope before cross signal interference would become a significant limiting factor.

Propagation & Signal Attenuation

In general, Millimeter Wave links can range in anywhere up to 10km depending on factors such as equipment specifications and environmental conditions. The propagation properties of Millimeter Waves are much like those of the other popular wireless networking frequencies in that they are most significantly affected by air moisture levels; atmospheric Oxygen is also a large factor in the 60GHz band but almost negligible in the other ranges, under 0.2 dB per km.

Water vapour affects the signal at between 0 and 3dB/km at high humidity levels and the propagation due to clouds and fog acts in a very similar way depending on the density and amount of droplets in the air. These losses are relatively low and only play a major factor when considering links at 5km+.

Effect Signal Loss (dB/km)
Oxygen absorption at Sea Level 0.22
Humidity of 100% at 30°C 1.8
Heavy Fog of 50m visibility 3.2
Heavy Rain Shower at 25mm/hr 10.7

At the 70 to 80GHz bands, water, in the form of rain, plays the most significant role in signal attenuation as it does with lower frequency signals too. The rate of rainfall, measured in mm/hour, is the depending factor in signal loss meaning that the harder it is raining, the lower the signal strength will be. Signal Propagation loss is also directly proportional to distance, so if the distance between transmitter and receiver is doubled, the loss in dB will be twice as much. Millimeter Wave performance is quite heavily dependent on rainfall and strongly affects Availability (discussed below), however, successful links can even be set up in areas of occasional heavy downpours.

Rainfall Type Rain Rate Signal Loss (dB/km)
Light Shower 1 mm/hour 0.9
Normal Rain 4 mm/hour 2.6
Heavy Burst 25mm/hour 10.7
Intense Storm 50 mm/hour 18.4

Availability

The reliability of a Millimeter Wave Wireless Network relies on the same principles as any other, in particular, the distance of operation, the radio’s link margin (being factors of transmit power, receiver sensitivity and beam divergence) and others such as redundancy paths. A link may be heavily affected by a period of intense rainfall but if it has a large enough margin, it will not suffer an outage.

The reliability of a network is called the availability and is measured as a percentage of time that the network will be functioning, for example, an availability of 99.999% over a year will equate to just over 5 hours of downtime. Much research by the ITU (International Telecommunication Union) has gone into collecting rainfall date from metropolitan areas around the world and how it will affect Millimeter Wave transmissions. You can see below an example of the expected availability of a widely available Millimeter Wave link for a few global cities and their respective availability for a 2km link.

Location Link Range (km, at 99.999% Availability) Availability (2 km link)
London 1.65 99.998%
Milan 1.35 99.994%
New York 1.25 99.991%
Los Angeles 1.75 99.998%
Sydney 1.20 99.99%
Riyadh 2.85 > 99.999%

Security is also an issue when dealing with wireless transmissions but due to Millimeter Wave’s inherently low beam widths (“pencil beams”) at about 0.36° radius with a 2ft. antenna along with, generally, lower peak transmit powers relative to lower frequencies the technology has a low probability of intercept and detection which is vital for the transference of confidential material.

Gigabit Wireless Technologies

Gigabit Wireless Technologies

Which technologies can we consider for a modern Gigabit Wireless Network?

Building a Gigabit Wireless Network
Building a Gigabit Wireless Network

Building a modern Gigabit Wireless Network will require choosing the appropriate technology for the precise network requirements.  With wireless, there is no “magic technology” or “one size fits all” approach – a successful network deployment will consider which technologies are best suited

Choosing the correct technology for a Gigabit Wireless Network is essential to ensure you have the very best throughput, capacity and network uptime.

Ask our team of experts who will be delighted to assist in designing an choosing exactly the right products and solutions to meet your needs

Contact us with any questions and requirements:

 

Welcome to Gigabit-Wireless.com!

Welcome to Gigabit-Wireless.com

Welcome – to the informational site for Gigabit Wireless Networking.  We consider the available technologies for Gigabit Wireless Metropolitan Area Networks including:

Welcome to Gigabit-Wireless.com
Welcome to Gigabit-Wireless.com

Feel welcome to read our site and find out more about building modern, reliable and scalable Gigabit Wireless Networks for Wireless Metropolitan Area Networks (Wi-Man), 4G/LTE backhaul networks, Small Cell Backhaul, Corporate Networks and Campus and CCTV wireless networks.

We include technology introduction papers as well as usage cases to guide users in the very latest in Gigabit Wireless technology and deployment.  Modern wireless products can reach 10Gbps or higher capacity.

Applications for Wireless

Welcome - Gigabit Wireless
Gigabit Wireless Technology

Gigabit Wireless networks are used in a wide range of applications which include

  • Safe Cities
  • Smart Cities
  • 4G/LTE Backhaul Networks
  • Broadband Wireless
  • Last Mile Networks
  • Campus Sites
  • Corporate Networks
  • Education networks
  • Metro WiFi
  • Security and CCTV

If you are considering a wireless network with 10Gbps or higher capacity, please ask our team of experts who will be delighted to assist:

For further Information on 10GBE Wireless

For more information please Contact Us