4G to 5G Roadmap

What is 5G?

5G Mobile Networks
5G Mobile Networks

5G radio access technology will be a key component of the Networked Society. It will address high traffic growth and increasing demand for high-bandwidth connectivity. It will also support massive numbers of connected devices and meet the real-time, high-reliability communication needs of mission-critical applications. 5G will provide wireless connectivity for a wide range of new applications and use cases, including wearables, smart homes, traffic safety/control, critical infrastructure, industry processes and very-high-speed media delivery. As a result, it will also accelerate the development of the Internet of Things. ITU Members including key industry players, industry forums, national and regional standards development organizations, regulators, network operators, equipment manufacturers as well as academia and research institutions together with Member States, gathered as the working group responsible for IMT systems, and completed a cycle of studies on the key performance requirements of 5G technologies for IMT-2020.

The Aim of 5G

The overall aim of 5G is to provide ubiquitous connectivity for any kind of device and any kind of application that may benefit from being connected. 5G networks will not be based on one specific radio-access technology. Rather, 5G is a portfolio of access and connectivity solutions addressing the demands and requirements of mobile communication beyond 2020.

CableFree 5G Technology
CableFree 5G Technology

The specification of 5G will include the development of a new flexible air interface, NX, which will be directed to extreme mobile broadband deployments. NX will also target high-bandwidth and high-traffic-usage scenarios, as well as new scenarios that involve mission-critical and realtime communications with extreme requirements in terms of latency and reliability.

In parallel, the development of Narrow-Band IoT (NB-IoT) in 3GPP is expected to support massive machine connectivity in wide area applications. NB-IoT will most likely be deployed in bands below 2GHz and will provide high capacity and deep coverage for enormous numbers of connected devices.

Ensuring interoperability with past generations of mobile communications has been a key principle of the ICT industry since the development of GSM and later wireless technologies within the 3GPP family of standards.

4G to 5G Evolution

In a similar manner, LTE will evolve in a way that recognizes its role in providing excellent coverage for mobile users, and 5G networks will incorporate LTE access (based on Orthogonal Frequency Division Multiplexing (OFDM)) along with new air interfaces in a transparent manner toward both the service layer and users. Around 2020, much of the available wireless coverage will continue to be provided by LTE, and it is important that operators with deployed 4G networks have the opportunity to transition some – or all – of their spectrum to newer wireless access technologies.

For operators with limited spectrum resources, the possibility of introducing 5G capabilities in an interoperable way – thereby allowing legacy devices to continue to be served on a compatible carrier – is highly beneficial and, in some cases, even vital. At the same time, the evolution of LTE to a point where it is a full member of the 5G family of air interfaces is essential, especially since initial deployment of new air interfaces may not operate in the same bands. The 5G network will enable dual-connectivity between LTE operating within bands below 6GHz and the NX air interface in bands within the range 6GHz to100GHz. NX should also allow for user-plane aggregation, i.e. joint delivery of data via LTE and NX component carriers. This paper explains the key requirements and capabilities of 5G, along with its technology components and spectrum needs.

In order to enable connectivity for a very wide range of applications with new characteristics and requirements, the capabilities of 5G wireless access must extend far beyond those of previous generations of mobile communication. These capabilities will include massive system capacity, very high data rates everywhere, very low latency, ultra-high reliability and availability, very low device cost and energy consumption, and energy-efficient networks.

MASSIVE SYSTEM CAPACITY

Traffic demands for mobile-communication systems are predicted to increase dramatically.  To support this traffic in an affordable way, 5G networks must deliver data with much lower cost per bit compared with the networks of today. Furthermore, the increase in data consumption will result in an increased energy footprint from networks. 5G must therefore consume significantly lower energy per delivered bit than current cellular networks. The exponential increase in connected devices, such as the deployment of billions of wirelessly connected sensors, actuators and similar devices for massive machine connectivity, will place demands on the network to support new paradigms in device and connectivity management that do not compromise security. Each device will generate or consume very small amounts of data, to the extent that they will individually, or even jointly, have limited impact on the overall traffic volume. However, the sheer number of connected devices seriously challenges the ability of the network to provision signaling and manage connections.

VERY HIGH DATA RATES EVERYWHERE

LTE Roadmap 4G to 5G
LTE Roadmap 4G to 5G

Every generation of mobile communication has been associated with higher data rates compared with the previous generation. In the past, much of the focus has been on the peak data rate that can be supported by a wireless-access technology under ideal conditions. However, a more important capability is the data rate that can actually be provided under real-life conditions in different scenarios.

  • 5G should support data rates exceeding 10Gbps in specific scenarios such as indoor and dense outdoor environments.
  • Data rates of several 100Mbps should generally be achievable in urban and suburban environments.
  • Data rates of at least 10Mbps should be accessible almost everywhere, including sparsely populated rural areas in both developed and developing countries.

VERY LOW LATENCY

Very low latency will be driven by the need to support new applications. Some envisioned 5G use cases, such as traffic safety and control of critical infrastructure and industry processes, may require much lower latency compared with what is possible with the mobile-communication systems of today. To support such latency-critical applications, 5G should allow for an application end-to-end latency of 1ms or less, although application-level framing requirements and codec limitations for media may lead to higher latencies in practice. Many services will distribute computational capacity and storage close to the air interface. This will create new capabilities for real-time communication and will allow ultra-high service reliability in a variety of scenarios, ranging from entertainment to industrial process control.

ULTRA-HIGH RELIABILITY AND AVAILABILITY

5G Wireless Technologies
5G Wireless Technologies

In addition to very low latency, 5G should also enable connectivity with ultra-high reliability and ultra-high availability. For critical services, such as control of critical infrastructure and traffic safety, connectivity with certain characteristics, such as a specific maximum latency, should not merely be ‘typically available.’ Rather, loss of connectivity and deviation from quality of service requirements must be extremely rare. For example, some industrial applications might need to guarantee successful packet delivery within 1 ms with a probability higher than 99.9999 percent.

VERY LOW DEVICE COST AND ENERGY CONSUMPTION

Low-cost, low-energy mobile devices have been a key market requirement since the early days of mobile communication. However, to enable the vision of billions of wirelessly connected sensors, actuators and similar devices, a further step has to be taken in terms of device cost and energy consumption. It should be possible for 5G devices to be available at very low cost and with a battery life of several years without recharging.

ENERGY-EFFICIENT NETWORKS

While device energy consumption has always been prioritized, energy efficiency on the network side has recently emerged as an additional KPI, for three main reasons:

  • Energy efficiency is an important component in reducing operational cost, as well as a driver for better dimensioned nodes, leading to lower total cost of ownership.
  • Energy efficiency enables off-grid network deployments that rely on medium-sized solar panels as power supplies, thereby enabling wireless connectivity to reach even the most remote areas.
  • Energy efficiency is essential to realizing operators’ ambition of providing wireless access in a sustainable and more resource-efficient way.

The importance of these factors will increase further in the 5G era, and energy efficiency will therefore be an important requirement in the design of 5G wireless access.

For More Information

Please Contact Us for more information on 5G and IMT-2020

Gigabit LTE and 5G:

The Roadmap to Gigabit LTE and 5G:

Two questions: “Do I need Gigabit LTE?” and “Will mobile networks support these new speeds?” The short answer to both is a resounding “Yes.”

Do I need Gigabit LTE?

There’s a common misconception that we need to address right away. Some people think that extreme speeds are only realized in ideal lab conditions, so they’re not relevant in the real world. Their argument is that current LTE devices and networks already support peak speeds of 300 Mbps or 600 Mbps, but actual speeds are lower. It follows, then, that there’s already “enough headroom” in the networks and thus the faster speeds are irrelevant.

Nothing could be further from the truth.

Here’s the thing. Gigabit LTE — and every other LTE innovation we’ve helped commercialize in the past few years — directly contributes to improving the real-world speeds that you’ll experience.

Gigabit LTE provides more consistent Internet speeds as compared to previous generations of LTE. In an extensive network simulation conducted by Qualcomm Technologies, we placed LTE devices of varying capabilities from Cat 4 to Cat 16 (the Gigabit LTE category) in the same network. The average throughput achieved by a GB LTE device was comfortably above 100 Mbps. Depending on traffic type, the average throughput could be much higher. That’s compared to around 65 Mbps for Cat 6 devices, the current baseline for many LTE devices and networks.

And these simulation results bear out in the real world. At the Sydney event, one analyst who tried the first Gigabit LTE device, reached 360 Mbps in a speed test. A real device on a live network in the middle of a very crowded tourist area — that’s the power of Gigabit LTE.

The constituent technologies that make Gigabit LTE possible — carrier aggregation, 4×4 MIMO, and 256-QAM — are engineered to allow the network to allocate many more network resources to your device simultaneously than you would get with an older LTE device. Or, alternatively, allocate fewer resources to you without diminishing the speed.

There’s an additional benefit as well. A Gigabit LTE device has four antennas in order to support 4×4 MIMO, giving it a hidden edge. In good signal conditions, you can get four streams of data that increase your speed, as compared to two streams with conventional LTE. In weak signal conditions, the additional antennas act like additional “ears” that are designed to help your Gigabit LTE device lock on to the signal from the tower, which can yield up to 70 percent faster speeds. Think about how slow LTE speeds can get in weak signal conditions. Wouldn’t this speed bump help quite a bit? A real-world study of this on T-Mobile’s network – using the Samsung Galaxy S7, which is capable of 4×4 MIMO – confirms this.

Additionally, with Gigabit LTE devices, you should be able to finish your downloads much faster, with fewer resources from the network. This can improve the capacity of the network and allow it to serve other users sooner. Not only do you enjoy faster speeds, but other people connected to the same cell tower get faster speeds as well, even if they don’t have a Gigabit LTE device.

So yes, you do need Gigabit LTE. It can improve your average, real-world speeds, give you better speeds in weak signal conditions, and allow other people to enjoy faster speeds too.

Will mobile networks support these new speeds?

Here, again, the answer is “Yes.”

Fifteen mobile operators in 11 countries intend to launch or trial Gigabit LTE in 2017. They include: T-Mobile, Sprint, and AT&T in the U.S.; EE, T-Mobile Germany, Vodafone, and Telefonica in Europe; and NTT DoCoMo, SoftBank, KDDI, and SingTel in Asia.

And, of course, Telstra’s Gigabit LTE network is already live. We expect many more to come online over the next few years. It’s important to remember that many people are hanging on to their devices for longer. So even if on day one your network doesn’t support GB LTE, there’s a good chance it may over the lifetime of your phone.

2017 will be the year of Gigabit LTE. And with the right device, power users can enjoy next-gen experiences sooner than we expected.

LTE Advanced and Gigabit Speeds for 4G

LTE: the roadmap ahead to Gigabit Speeds

Gigabit 4G LTE Technology
Gigabit 4G LTE Technology

LTE enabled smartphones made up only 1 in 4 new devices shipped back in 2013.  By 2015, that percentage share soared to over half of all new smartphones shipped globally.  In fact, LTE is arguably the most successful generational wireless technology having just been commercialized in late 2009 and evolved to capture the majority of the market for new handsets today.  Previous 3G technologies took over a decade to achieve what LTE has done in just 6 years.

The surge in LTE adoption, not coincidental, parallels the growth of the smartphone creating a symbiotic relationship that propelled massive adoption of wireless broadband and smartphone use.  The order of magnitude improvement in network latency provided by LTE wireless connectivity coupled with the rapid growth in digital content and the readily available computing power within everyone’s reach created a rich tapestry of mobile opportunities.

CableFree LTE CPE Indoor Desktop Router with WiFi and VOIP
CableFree LTE CPE Indoor Desktop Router with WiFi and VOIP

As the global LTE network deployments enter a new phase of network enhancements, the industry is now turning to enhanced wireless technologies to evolve the speed and capacity to keep up with consumer demand for ever faster downloads, video streams and mobile applications.  The first stage of LTE network improvement revolved around the use of carrier aggregation which is a method of combining disparate spectrum holdings to create a larger data pipe.  This development tracked with the evolution of LTE from single carrier Cat-3 devices to dual carrier Cat-4 and Cat-6 devices.  Further development of carrier aggregation extended the concept to include 3 carrier aggregation specified by Cat-9 LTE standards which brought the maximum throughput speed to 450mbps in the downlink.

However, in order for the industry to evolve further and keep up with the insatiable demand for mobile broadband, LTE Advanced will require further improvements.  The next step in the evolution of LTE relies on LTE Advanced.  This new set of technologies is destined to improve LTE speed to and past the gigabit-per-second barrier.  To this end, IHS will be delivering a series of LTE Advanced Insights to further explore the key enabling technologies to get us to that gigabit per second barrier. This article is the first of this series.

Critical Areas of Exploration

Operators typically ask critical questions including but not limited to:

  • What is higher order modulation and how does radio signaling enhancement lead to faster wireless broadband?
  • How can advanced antenna designs be incorporated into existing smartphone form factors and what are the physical challenges involved in doing so?
  • What are the opportunities to leverage additional spectrum use especially in the unlicensed portions of 3.5GHz and 5GHz?  What are the advantages as well as the challenges of doing so?
  • How can the industry take learnings from the 3G to 4G transition and build on the foundations of LTE moving into 5G?

QAM: Higher Order Modulation to Break Through Gigabit per Second Barrier

Higher order modulation schemes have been used throughout 3G technologies and now enabling the increased bandwidth coming into 4G LTE Advanced.   As WCDMA evolved into HSPA and HSPA+ in the 3G era, higher order modulations of 16QAM and 64QAM replaced the older QPSK modulation schemes to improve throughput data rates that enable mobile broadband services to take off.  Fundamentally, sophisticated signal processing such as 64QAM are used in wireless networks to improve the spectral efficiency of communications by packing in as many bits as possible into each transmission.  The bits-per-symbol carried by 16QAM modulation scheme is 4 bits while higher order 64QAM yields 6 bits per symbol, a 50% improvement.  Extending this concept, LTE Advanced will use 256QAM modulation from Category 11 onwards which is expected to provide a 33% improvement in spectral efficient over that of 64QAM over the same stream of LTE by increasing the bits-per-symbol to 8 from 6.

Modulation Level (QAM) Bits per Symbol Incremental Efficiency Gain
16QAM 4
64QAM 6 50%
256QAM 8 33%

Table 1 – Modulation Levels and Corresponding Efficiency Gains

While higher order modulations equate greater spectral efficiencies, within the framework of wireless networks, achieving higher order signaling remains a significant challenge.  Real world applications of higher order modulations are difficult to implement network wide as the more sophisticated signaling schemes are inherently less resilient to noise and interference.  In normal deployments of macro cellular coverage, network operators employ adaptive modulation techniques to detect signal channel conditions and adjust modulation schemes accordingly.  For example, if the wireless user is closer to the center of the macro cell area, the network will negotiate the signaling scheme to best take advantage of the wireless fidelity and communicate using the most efficient modulation scheme available.  However, if the conditions are deemed inadequate, for example, at a cell site coverage edge, the network may resort to lower orders of modulation signaling in order to achieve higher reliability of connections.

LTE Category Carrier Aggregation MIMO Spatial Streams Modulation Max. Throughput
Cat-4 2x10MHz 2×2 4 64QAM 150mbps
Cat-6 2x20MHz 2×2 4 64QAM 300mbps
Cat-9 3x20MHz 2×2 6 64QAM 450mbps
Cat-11 3x20MHz 2×2 6 256QAM 600mbps
Cat-16 3x20MHz 4×4 10 256QAM 1000mbps

Table 2 –LTE Categories and Corresponding Throughput Gains

LTE Advanced Base Station

The previous paragraph described limitation of higher order modulation was a hallmark of 3G networks.  However, as LTE deployments begin to rely a more 5G- like heterogeneous network architecture leveraging augmented network equipment such as small cells, the use of higher order modulation becomes more practical as the distance from LTE antenna and the mobile device is reduced.  Yet again, with a challenging transmission medium such as over the air wireless, obstacles still exist.  Even with the most optimized heterogeneous networks, issues such as site to site signal interference can negate much of the benefits of small cells. Therefore, network operators, with help from their equipment vendors, are working on network optimization software to accommodate these interferences.  At the end, any network, even ones designed for Cat-11 LTE and above, will not be able to cover all their mobile subscribers with the highest efficiency signaling.  In actual deployment, only a portion of the devices within a coverage area will be at 256QAM while the majority other devices will fall back to a lower modulation scheme such as 64QAM or 16QAM.  Also, additional challenges exist in carrier aggregated LTE connections whereby 2 or 3 carriers can be aggregated to form a wider virtual channel, here, depending on the frequencies used and the placement of cell towers associated with those specific spectrum, not all of the aggregated radio signals can be adapted to signal in higher order modulation.  Therefore, reaching the theoretical maximum throughput data rates using higher order modulation will be particularly difficult in actual network deployments.

With these real-world deployment limitations on the handset side in mind, higher order modulation schemes have been shown to be a net benefit for LTE networks.  Under trial tests, it has been shown that even a small fraction of users in a coverage cell using 256 QAM create improvements in network capacity performance.  As devices with 256QAM enter and exit a network faster and more efficiently, it frees up wireless capacity to serve non-256QAM signaling devices on the network.  Overall, enabling higher order modulation on an LTE network present a cost advantageous proposition to network carriers as the upgrade is primarily a software based solution.  Going to 256QAM gives network carriers immediate benefits without significant hardware changes that are typically associated with other LTE Advanced features such as adding additional carriers or scaling MIMO antennas.

Evolving LTE Advanced to Gigabit Speeds

Putting the Pieces Together:

In order to achieve gigabit speeds in LTE Advanced, higher order modulation is one tool in a vast tool box of technologies the industry can use to propel 4G LTE further as the market waits for the consensus around the next generation 5G networks.  By building on top of carrier aggregation technology discussed earlier in this series, the implementation of higher order modulation in Cat-11 LTE increased the maximum theoretical throughput to 600mbps using the same 3-carrier aggregated spectrum as dictated by LTE Cat-9.  This 33% improvement from 450mbps is directly accredited to the improved bits-per-symbol efficiency described in this paper.

QAM Modulation, MIMO, CA and Spectrum

So what else is required to take LTE Advanced to gigabit speeds? Well, if we look at the 3GPP Release 12, Cat-16 LTE can get to a theoretical gigabit per second speed using the following combination of the following technologies in concert:

  • 256QAM modulation
  • 4×4 MIMO with 10 spatial streams (2 high frequency carriers with 4 layers each and 1 low frequency carrier at 2 layers)
  • Multi-carrier aggregation (3x20MHz or greater)
  • Use of additional spectrum such as LTE over unlicensed frequencies

What’s needed? Chipset advances

LTE Advanced Category 6 CPE Devices
LTE Advanced Category 6 CPE Devices

Currently, while the bulk of LTE smartphones sold today is still on Cat-6 modems, modem manufacturers are fast working to prepare the electronic component ecosystem with very capable LTE modems that can take advantage of the huge potential and headroom of evolved LTE.  Qualcomm in particular has recently announced their X16 modem chipset which has been designed to take advantage of LTE Cat-16.  The company claims that volume shipment of X16 modem devices will begin in H2 2016.  Other modem makers have not yet announced a CAT-16 capable LTE modem yet but the next iteration of LTE Advanced will clearly be on their roadmap. Meanwhile, wireless infrastructure equipment manufacturers such as Ericsson are lining up technologies to achieve CAT-16 network deployments.  Therefore, technically, commercial gigabit speed LTE Advanced Pro networks and devices can be realized in early 2017.

For Further Information

Please Contact Us for more information on our exciting range of solutions using LTE technology

5G – 5th Generation Mobile Wireless Networks

5G Mobile Wireless Technology

Preliminary details and information about the wireless technology being developed for 5th generation or 5G mobile wireless or cellular telecommunications systems

5G Mobile Networks
5G Mobile Wireless Technology

With the 4G telecommunications systems now starting to be deployed, eyes are looking towards the development of 5th generation or 5G technology and services.

Although the deployment of any wireless or cellular system takes many years, development of the 5G technology systems is being investigated. The new 5G technologies will need to be chosen developed and perfected to enable timely and reliable deployment.

The new 5th generation, 5G technology for cellular systems will probably start to come to fruition around 2020 with deployment following on afterwards.

5G mobile systems status

The current status of the 5G technology for cellular systems is very much in the early development stages. Very many companies are looking into the technologies that could be used to become part of the system. In addition to this a number of universities have set up 5G research units focussed on developing the technologies for 5G

In addition to this the standards bodies, particularly 3GPP are aware of the development but are not actively planning the 5G systems yet.

Many of the technologies to be used for 5G will start to appear in the systems used for 4G and then as the new 5G cellular system starts to formulate in a more concrete manner, they will be incorporated into the new 5G cellular system.

The major issue with 5G technology is that there is such an enormously wide variation in the requirements: superfast downloads to small data requirements for IoT than any one system will not be able to meet these needs. Accordingly a layer approach is likely to be adopted. As one commentator stated: 5G is not just a mobile technology. It is ubiquitous access to high & low data rate services.

5G cellular systems overview

5G Wireless Technologies
5G Wireless Technologies

As the different generations of cellular telecommunications have evolved, each one has brought its own improvements. The same will be true of 5G technology.

  • First generation, 1G:   These phones were analogue and were the first mobile or cellular phones to be used. Although revolutionary in their time they offered very low levels of spectrum efficiency and security.
  • Second generation, 2G:   These were based around digital technology and offered much better spectrum efficiency, security and new features such as text messages and low data rate communications.
  • Third generation, 3G:   The aim of this technology was to provide high speed data. The original technology was enhanced to allow data up to 14 Mbps and more.
  • Fourth generation, 4G:   This was an all-IP based technology capable of providing data rates up to 1 Gbps.

Any new 5th generation, 5G cellular technology needs to provide significant gains over previous systems to provide an adequate business case for mobile operators to invest in any new system.

Facilities that might be seen with 5G technology include far better levels of connectivity and coverage. The term World Wide Wireless Web, or WWWW is being coined for this.

For 5G technology to be able to achieve this, new methods of connecting will be required as one of the main drawbacks with previous generations is lack of coverage, dropped calls and low performance at cell edges. 5G technology will need to address this.

5G specifications

Although the standards bodies have not yet defined the parameters needed to meet a 5G performance level yet, other organisations have set their own aims, that may eventually influence the final specifications.

Typical parameters for a 5G standard may include:

SUGGESTED 5G WIRELESS PERFORMANCE
PARAMETER SUGGESTED PERFORMANCE
Network capacity 10 000 times capacity of current network
Peak data rate 10 Gbps
Cell edge data rate 100 Mbps
Latency < 1 ms

These are some of the ideas being put forwards for a 5G standard, but they are not accepted by any official bodies yet.

Current research

There are several key areas that are being investigated by research organisations. These include:

  • Millimeter-Wave technologies:   Using frequencies much higher in the frequency spectrum opens up more spectrum and also provides the possibility of having much wide channel bandwidth – possibly 1 – 2 GHz. However this poses new challenges for handset development where maximum frequencies of around 2 GHz and bandwidths of 10 – 20 MHz are currently in use. For 5G, frequencies of above 50GHz are being considered and this will present some real challenges in terms of the circuit design, the technology, and also the way the system is used as these frequencies do not travel as far and are absorbed almost completely by obstacles. 
  • Future PHY / MAC:   The new physical layer and MAC presents many new interesting possibilities in a number of areas:
    • Waveforms:   One key area of interest is that of the new waveforms that may be seen. OFDM has been used very successfully in 4G LTE as well as a number of other high data rate systems, but it does have some limitations in some circumstances. Formats being proposed include: GFDM, Generalised Frequency Division Multiplexing, as well as FBMC, Filter Bank Multi-Carrier, UFMC, Universal Filtered MultiCarrier. Each has its own advantages and limitations and it is possible that adaptive schemes may be employed, utilising different waveforms adaptively for the 5G mobile systems as the requirements dictate. This provides considerably more flexibility for 5G mobile communications. Read more about 5G waveforms
    • Multiple Access Schemes:   Again a variety of new access schemes are being investigated for 5G technology. Techniques including OFDMA, SCMA, NOMA, PDMA, MUSA and IDMA have all been mentioned. Read more about 5G multiple access schemes
    • Modulation:   Whilst PSK and QAM have provided excellent performance in terms of spectral efficiency, resilience and capacity, the major drawback is that of a high peak to average power ratio. Modulation schemes like APSK could provide advantages in some circumstances. Read more about 5G modulation schemes
  • Duplex methods:   There are several candidate forms of duplex that are being considered. Currently systems use either frequency division duplex, FDD or time division duplex, TDD. New possibilities are opening up for 5G including flexible duplex, where the time or frequencies allocated are variable according toth e load in either direction or a new scheme called division free duplex or single channel full duplex. This scheme for 5G would enable simultaneous transmission and reception on the same channel. Read more about 5G full duplex
  • Massive MIMO:   Although MIMO is being used in many applications from LTE to Wi-Fi, etc, the numbers of antennas is fairly limited -. Using microwave frequencies opens up the possibility of using many tens of antennas on a single equipment becomes a real possibility because of the antenna sizes and spacings in terms of a wavelength.
  • Dense networks   Reducing the size of cells provides a much more overall effective use of the available spectrum. Techniques to ensure that small cells in the macro-network and deployed as femtocells can operate satisfactorily are required.

Other 5G concepts

5G Mobile Networks
5G Mobile Networks

There are many new concepts that are being investigated and developed for the new 5th generation mobile system. Some of these include:

  • Pervasive networks :   This technology being considered for 5G cellular systems is where a user can concurrently be connected to several wireless access technologies and seamlessly move between them.
  • Group cooperative relay:   This is a technique that is being considered to make the high data rates available over a wider area of the cell. Currently data rates fall towards the cell edge where interference levels are higher and signal levels lower.
  • Cognitive radio technology:   If cognitive radio technology was used for 5th generation, 5G cellular systems, then it would enable the user equipment / handset to look at the radio landscape in which it is located and choose the optimum radio access network, modulation scheme and other parameters to configure itself to gain the best connection and optimum performance.
  • Wireless mesh networking and dynamic ad-hoc networking:   With the variety of different access schemes it will be possible to link to others nearby to provide ad-hoc wireless networks for much speedier data flows.
  • Smart antennas:   Another major element of any 5G cellular system will be that of smart antennas. Using these it will be possible to alter the beam direction to enable more direct communications and limit interference and increase overall cell capacity.

There are many new techniques and technologies that will be used in the new 5G cellular or mobile telecommunications system. These new 5G technologies are still being developed and the overall standards have not yet be defined. However as the required technologies develop, they will be incorporated into the new system which will be defined by the standards bodies over the coming years.

For Further Information

For more information please Contact Us

Free Space Optics Technology

Introduction to Free Space Optics

CableFree FSO - Free Space Optics
CableFree Free Space Optics

FSO is a line-of-sight wireless communication technology that uses invisible beams of light to provide high speed wireless connections that can send and receive voice, video, and data information. Today, FSO technology – pioneered and championed by CableFree’s optical wireless offerings – has enabled the development of a new category of outdoor wireless products that can transmit voice, data, and video at bandwidths up to 1.25 Gbps. Free Space Optics connectivity doesn’t require expensive fibre-optic cable and removes need for securing spectrum licenses for radio frequency (RF) solutions. FSO technology requires light. The use of light is a simple concept similar to optical transmissions using fiber-optic cables; the only difference is the medium. Light travels through air faster than it does through glass, so it is fair to classify FSO technology as optical communications at the speed of light.

History of Free Space Optics

Optical communications, in various forms, have been used for thousands of years. The Ancient Greeks used a coded alphabetic system of signalling with torches developed by Cleoxenus, Democleitus and Polybius. In the modern era, semaphores and wireless solar telegraphs called heliographs were developed, using coded signals to communicate with their recipients. In 1880 Alexander Graham Bell and his assistant Charles Sumner Tainter created the Photophone, at Bell’s newly established Volta Laboratory in Washington, DC. Bell considered it his most important invention. The device allowed for the transmission of sound on a beam of light. On June 3, 1880, Bell conducted the world’s first wireless telephone transmission between two buildings, some 213 meters (700 feet) apart.  Its first practical use came in military communication systems many decades later, first for optical telegraphy. German colonial troops used Heliograph telegraphy transmitters during the 1904/05 Herero Genocide in German South-West Africa (today’s Namibia) as did British, French, US or Ottoman signals.

During the trench warfare of World War I when wire communications were often cut, German signals used three types of optical Morse transmitters called Blinkgerät, the intermediate type for distances of up to 4 km (2.5 miles) at daylight and of up to 8 km (5 miles) at night, using red filters for undetected communications. Optical telephone communications were tested at the end of the war, but not introduced at troop level. In addition, special blinkgeräts were used for communication with airplanes, balloons, and tanks, with varying success. A major technological step was to replace the Morse code by modulating optical waves in speech transmission. Carl Zeiss Jena developed the Lichtsprechgerät 80/80 (literal translation: optical speaking device) that the German army used in their World War II anti-aircraft defense units, or in bunkers at the Atlantic Wall.

The invention of lasers in the 1960s revolutionized free space optics. Military organizations were particularly interested and boosted their development. However the technology lost market momentum when the installation of optical fiber networks for civilian uses was at its peak.

FSO vendor CableFree has extensive experience in this area: CableFree developed some of the world’s first successful commercial FSO links, with world-first achievements including

  • World’s first commercial 622Mbps wireless link:  1997
  • World’s first commercial Gigabit Ethernet 1.25Gbps wireless link:  1999

While fibre-optic communications gained worldwide acceptance in the telecommunications industry, FSO communications is still considered relatively new. CableFree Free Space Optical technology from Wireless Excellence enables bandwidth transmission capabilities that are similar to fibre optics, using similar optical transmitters and receivers and even enabling WDM-like technologies to operate through free space.

How Free Space Optics / Laser Communications Work

CableFree Free Space Optics at London 2012 OlympicsThe concept behind FSO technology is very simple. It’s based on connectivity between FSO-based optical wireless units, each consisting of an optical transceiver with a transmitter and a receiver to provide full-duplex (bi-directional) capability. Each optical wireless unit uses an optical source, plus a lens or telescope that transmits light through the atmosphere to another lens receiving the information. At this point, the receiving lens or telescope connects to a high-sensitivity receiver via optical fibre. This Free Space Optics technology approach has a number of advantages: Requires no RF spectrum licensing. Is easily upgradeable, and its open interfaces support equipment from a variety of vendors, which helps enterprises and service providers protect their investment in embedded telecommunications infrastructures. Requires no security software upgrades. Is immune to radio frequency interference or saturation. FSO Can be deployed behind windows, eliminating the need for costly rooftop rights.

Choosing Free Space Optics or Radio Frequency Wireless

CableFree FSO links in Cairo, EgyptOptical wireless, using FSO technology, is an outdoor wireless product category that provides the speed of fibre, with the flexibility of wireless. It enables optical transmission at speeds of up to 1.25 Gbps and, in the future, is capable of speeds of 10 Gbps using WDM. This is not possible with any fixed wireless or RF technology. Optical wireless also eliminates the need to buy expensive spectrum (it requires no FCC or municipal license approvals worldwide), which further distinguishes it from fixed wireless technologies. Moreover, FSO technology’s narrow beam transmission is typically two meters versus 20 meters and more for traditional, even newer radio-based technologies such as millimeter-wave radio. Optical wireless products’ similarities with conventional wired optical solutions enable the seamless integration of access networks with optical core networks and helps to realize the vision of an all-optical network.

Free Space Technology in Communication Networks

CableFree FSO used in CCTV NetworksFree-space optics technology (FSO) has several applications in communications networks, where a connectivity gap exists between two or more points. FSO technology delivers cost-effective optical wireless connectivity and a faster return on investment (ROI) for Enterprises and Mobile Carriers. With the ever-increasing demand for greater bandwidth by Enterprise and Mobile Carrier subscribers comes a critical need for FSO-based products for a balance of throughput, distance and availability. During the last few years, customer deployments of FSO-based products have grown. Here are some of the primary network uses:

CableFree FSO NetworkEnterprise

Because of the scalability and flexibility of FSO technology, optical wireless products can be deployed in many enterprise applications including building-to-building connectivity, disaster recovery, network redundancy and temporary connectivity for applications such as data, voice and data, video services, medical imaging, CAD and engineering services, and fixed-line carrier bypass.

Mobile Carrier Backhaul

FSO - Free Space Optics InstallationFree Space Optics is valuable tool in Mobile Carrier Backhaul: FSO technology and optical wireless products can be deployed to provide traditional PDH 16xE1/T1, STM-1 and STM-4, and Modern IP Gigabit Ethernet backhaul connectivity and Greenfield mobile networks.

Front-Haul: Mobile Carrier Base Station “Hoteling”

Free Space Optics CPRI Front-Haul for 4G NetworksFSO-based products can be used to expand Mobile Carrier Network footprints through base station “hoteling.” using CPRI interface. Free Space Optics with CPRI enables “front haul” networks where the remote radio heads can be separated by up to 2km from the Base station with a 1.22Gbps CPRI “native” link between them.

Low Latency Networks

CableFree Free Space OpticsFree Space Optics is an inherently Low Latency Technology, with effectively no delay between packets being transmitted and received at the other end, except the Line of Sight propagation delay.  The Speed of Light through the air is approximately 40% higher than through fibre optics, giving customers an immediate 40% reduction in latency compared to fibre optics.  In addition, fibre optic installations are almost never in a straight line, with realities of building layout, street ducts and requirement to use existing telecom infrastructure, the fibre run can be 100% longer than the direct Line of Sight path between two end points.  Hence FSO is popular in Low Latency Applications such as High Frequency Trading and other uses.