The new standard 802.11ax for Wi-Fi goes beyond 802.11ac wireless
A new standard for high speed multi-gigabit WiFi is emerging. Current WiFi products use chips based on the IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, IEEE 802.11 and IEEE 802.11ac standard have really only begun rolling out, an effort to deliver an enhancement called IEEE 802.11ax that promises to deliver faster and longer range Wi-Fi networks.
The up-coming 802.11ax is as an enhancement of 802.11ac in the unlicensed 2.4 and 5GHz bands of spectrum, and should be a natural upgrade. The upgrade will offer significant speed and range improvements.
Technical Summary
IEEE 802.11 ax is a type of WLAN in the IEEE 802.11 set of types of WLANs. It is designed to improve overall spectral efficiency especially in dense deployment scenarios. It is still in a very early stage of development, but is predicted to have a top speed of around 10 Gb/s, it works in 2.4 and/or 5 GHz, in addition to MIMO and MU-MIMO it introduces OFDMA technique to improve spectral efficiency and also higher order 1024 QAM modulation support for better throughputs. Though the nominal data rate is just 37% higher comparing with 802.11ac, the new amendment will allow achieving 4X increase of user throughput thanks to more efficient spectrum usage. It is due to be publicly released in 2019.
Modulation and coding schemes for single spatial stream
MCS
index
Modulation
type
Coding
rate
Data rate (in Mb/s)
20 MHz channels
40 MHz channels
80 MHz channels
160 MHz channels
1600 ns GI
800 ns GI
1600 ns GI
800 ns GI
1600 ns GI
800 ns GI
1600 ns GI
800 ns GI
0
BPSK
1/2
4
4
8
9
17
18
34
36
1
QPSK
1/2
16
17
33
34
68
72
136
144
2
QPSK
3/4
24
26
49
52
102
108
204
216
3
16-QAM
1/2
33
34
65
69
136
144
272
282
4
16-QAM
3/4
49
52
98
103
204
216
408
432
5
64-QAM
2/3
65
69
130
138
272
288
544
576
6
64-QAM
3/4
73
77
146
155
306
324
613
649
7
64-QAM
5/6
81
86
163
172
340
360
681
721
8
256-QAM
3/4
98
103
195
207
408
432
817
865
9
256-QAM
5/6
108
115
217
229
453
480
907
961
10
1024-QAM
3/4
122
129
244
258
510
540
1021
1081
11
1024-QAM
5/6
135
143
271
287
567
600
1134
1201
Technical improvements
The 802.11ax amendment will bring several key improvements over 802.11ac. 802.11ax addresses frequency bands between 1 GHz and 6 GHz. Therefore, unlike 802.11ac, 802.11ax will also operate in the unlicensed 2.4 GHz band. To meet the goal of supporting dense 802.11 deployments the following features have been approved.
Other up-coming Fast WiFi standards: 802.11ay
Users should not confuse 802.11ax with 802.11ay, which will work in the 60GHz bands. The lower frequency bands 1-6GHz for 11ax will penetrate walls. 11ay will not.
What will 802.11ax be used for?
802.11ax is an upgrade for existing 802.11a, 802.11b, 802.11g, 802.11n and 802.11ac networks, Many are enthusiastic about 802.1ax’s potential as a fixed point-to-point or point-to-multipoint outdoor backhaul technology, especially in light of scaled back fiber rollout plans by providers like Google and Verizon in the face of extraordinary costs associated with such implementations. Therefore 11ax will find applications outdoors as well as indoors.
Who is behind 802.11ax?
The IEEE task force leading the 11ax work includes representatives from major equipment and chipsets vendors.
In 2012 and 2013, IEEE 802.11 received various submissions in its Standing Committee (SC) Wireless Next Generation (WNG) looking at issues of IEEE 802.11ac and potential solutions for future WLANs. Immediately after the publication of IEEE 802.11ac in March 2013, the IEEE 802.11 Working Group (WG) established Study Group (SG) High Efficiency WLAN (HEW)
5G radio access technology will be a key component of the Networked Society. It will address high traffic growth and increasing demand for high-bandwidth connectivity. It will also support massive numbers of connected devices and meet the real-time, high-reliability communication needs of mission-critical applications. 5G will provide wireless connectivity for a wide range of new applications and use cases, including wearables, smart homes, traffic safety/control, critical infrastructure, industry processes and very-high-speed media delivery. As a result, it will also accelerate the development of the Internet of Things. ITU Members including key industry players, industry forums, national and regional standards development organizations, regulators, network operators, equipment manufacturers as well as academia and research institutions together with Member States, gathered as the working group responsible for IMT systems, and completed a cycle of studies on the key performance requirements of 5G technologies for IMT-2020.
The Aim of 5G
The overall aim of 5G is to provide ubiquitous connectivity for any kind of device and any kind of application that may benefit from being connected. 5G networks will not be based on one specific radio-access technology. Rather, 5G is a portfolio of access and connectivity solutions addressing the demands and requirements of mobile communication beyond 2020.
The specification of 5G will include the development of a new flexible air interface, NX, which will be directed to extreme mobile broadband deployments. NX will also target high-bandwidth and high-traffic-usage scenarios, as well as new scenarios that involve mission-critical and realtime communications with extreme requirements in terms of latency and reliability.
In parallel, the development of Narrow-Band IoT (NB-IoT) in 3GPP is expected to support massive machine connectivity in wide area applications. NB-IoT will most likely be deployed in bands below 2GHz and will provide high capacity and deep coverage for enormous numbers of connected devices.
Ensuring interoperability with past generations of mobile communications has been a key principle of the ICT industry since the development of GSM and later wireless technologies within the 3GPP family of standards.
4G to 5G Evolution
In a similar manner, LTE will evolve in a way that recognizes its role in providing excellent coverage for mobile users, and 5G networks will incorporate LTE access (based on Orthogonal Frequency Division Multiplexing (OFDM)) along with new air interfaces in a transparent manner toward both the service layer and users. Around 2020, much of the available wireless coverage will continue to be provided by LTE, and it is important that operators with deployed 4G networks have the opportunity to transition some – or all – of their spectrum to newer wireless access technologies.
For operators with limited spectrum resources, the possibility of introducing 5G capabilities in an interoperable way – thereby allowing legacy devices to continue to be served on a compatible carrier – is highly beneficial and, in some cases, even vital. At the same time, the evolution of LTE to a point where it is a full member of the 5G family of air interfaces is essential, especially since initial deployment of new air interfaces may not operate in the same bands. The 5G network will enable dual-connectivity between LTE operating within bands below 6GHz and the NX air interface in bands within the range 6GHz to100GHz. NX should also allow for user-plane aggregation, i.e. joint delivery of data via LTE and NX component carriers. This paper explains the key requirements and capabilities of 5G, along with its technology components and spectrum needs.
In order to enable connectivity for a very wide range of applications with new characteristics and requirements, the capabilities of 5G wireless access must extend far beyond those of previous generations of mobile communication. These capabilities will include massive system capacity, very high data rates everywhere, very low latency, ultra-high reliability and availability, very low device cost and energy consumption, and energy-efficient networks.
MASSIVE SYSTEM CAPACITY
Traffic demands for mobile-communication systems are predicted to increase dramatically. To support this traffic in an affordable way, 5G networks must deliver data with much lower cost per bit compared with the networks of today. Furthermore, the increase in data consumption will result in an increased energy footprint from networks. 5G must therefore consume significantly lower energy per delivered bit than current cellular networks. The exponential increase in connected devices, such as the deployment of billions of wirelessly connected sensors, actuators and similar devices for massive machine connectivity, will place demands on the network to support new paradigms in device and connectivity management that do not compromise security. Each device will generate or consume very small amounts of data, to the extent that they will individually, or even jointly, have limited impact on the overall traffic volume. However, the sheer number of connected devices seriously challenges the ability of the network to provision signaling and manage connections.
VERY HIGH DATA RATES EVERYWHERE
Every generation of mobile communication has been associated with higher data rates compared with the previous generation. In the past, much of the focus has been on the peak data rate that can be supported by a wireless-access technology under ideal conditions. However, a more important capability is the data rate that can actually be provided under real-life conditions in different scenarios.
5G should support data rates exceeding 10Gbps in specific scenarios such as indoor and dense outdoor environments.
Data rates of several 100Mbps should generally be achievable in urban and suburban environments.
Data rates of at least 10Mbps should be accessible almost everywhere, including sparsely populated rural areas in both developed and developing countries.
VERY LOW LATENCY
Very low latency will be driven by the need to support new applications. Some envisioned 5G use cases, such as traffic safety and control of critical infrastructure and industry processes, may require much lower latency compared with what is possible with the mobile-communication systems of today. To support such latency-critical applications, 5G should allow for an application end-to-end latency of 1ms or less, although application-level framing requirements and codec limitations for media may lead to higher latencies in practice. Many services will distribute computational capacity and storage close to the air interface. This will create new capabilities for real-time communication and will allow ultra-high service reliability in a variety of scenarios, ranging from entertainment to industrial process control.
ULTRA-HIGH RELIABILITY AND AVAILABILITY
In addition to very low latency, 5G should also enable connectivity with ultra-high reliability and ultra-high availability. For critical services, such as control of critical infrastructure and traffic safety, connectivity with certain characteristics, such as a specific maximum latency, should not merely be ‘typically available.’ Rather, loss of connectivity and deviation from quality of service requirements must be extremely rare. For example, some industrial applications might need to guarantee successful packet delivery within 1 ms with a probability higher than 99.9999 percent.
VERY LOW DEVICE COST AND ENERGY CONSUMPTION
Low-cost, low-energy mobile devices have been a key market requirement since the early days of mobile communication. However, to enable the vision of billions of wirelessly connected sensors, actuators and similar devices, a further step has to be taken in terms of device cost and energy consumption. It should be possible for 5G devices to be available at very low cost and with a battery life of several years without recharging.
ENERGY-EFFICIENT NETWORKS
While device energy consumption has always been prioritized, energy efficiency on the network side has recently emerged as an additional KPI, for three main reasons:
Energy efficiency is an important component in reducing operational cost, as well as a driver for better dimensioned nodes, leading to lower total cost of ownership.
Energy efficiency enables off-grid network deployments that rely on medium-sized solar panels as power supplies, thereby enabling wireless connectivity to reach even the most remote areas.
Energy efficiency is essential to realizing operators’ ambition of providing wireless access in a sustainable and more resource-efficient way.
The importance of these factors will increase further in the 5G era, and energy efficiency will therefore be an important requirement in the design of 5G wireless access.
For More Information
Please Contact Us for more information on 5G and IMT-2020
Two questions: “Do I need Gigabit LTE?” and “Will mobile networks support these new speeds?” The short answer to both is a resounding “Yes.”
Do I need Gigabit LTE?
There’s a common misconception that we need to address right away. Some people think that extreme speeds are only realized in ideal lab conditions, so they’re not relevant in the real world. Their argument is that current LTE devices and networks already support peak speeds of 300 Mbps or 600 Mbps, but actual speeds are lower. It follows, then, that there’s already “enough headroom” in the networks and thus the faster speeds are irrelevant.
Nothing could be further from the truth.
Here’s the thing. Gigabit LTE — and every other LTE innovation we’ve helped commercialize in the past few years — directly contributes to improving the real-world speeds that you’ll experience.
Gigabit LTE provides more consistent Internet speeds as compared to previous generations of LTE. In an extensive network simulation conducted by Qualcomm Technologies, we placed LTE devices of varying capabilities from Cat 4 to Cat 16 (the Gigabit LTE category) in the same network. The average throughput achieved by a GB LTE device was comfortably above 100 Mbps. Depending on traffic type, the average throughput could be much higher. That’s compared to around 65 Mbps for Cat 6 devices, the current baseline for many LTE devices and networks.
And these simulation results bear out in the real world. At the Sydney event, one analyst who tried the first Gigabit LTE device, reached 360 Mbps in a speed test. A real device on a live network in the middle of a very crowded tourist area — that’s the power of Gigabit LTE.
The constituent technologies that make Gigabit LTE possible — carrier aggregation, 4×4 MIMO, and 256-QAM — are engineered to allow the network to allocate many more network resources to your device simultaneously than you would get with an older LTE device. Or, alternatively, allocate fewer resources to you without diminishing the speed.
There’s an additional benefit as well. A Gigabit LTE device has four antennas in order to support 4×4 MIMO, giving it a hidden edge. In good signal conditions, you can get four streams of data that increase your speed, as compared to two streams with conventional LTE. In weak signal conditions, the additional antennas act like additional “ears” that are designed to help your Gigabit LTE device lock on to the signal from the tower, which can yield up to 70 percent faster speeds. Think about how slow LTE speeds can get in weak signal conditions. Wouldn’t this speed bump help quite a bit? A real-world study of this on T-Mobile’s network – using the Samsung Galaxy S7, which is capable of 4×4 MIMO – confirms this.
Additionally, with Gigabit LTE devices, you should be able to finish your downloads much faster, with fewer resources from the network. This can improve the capacity of the network and allow it to serve other users sooner. Not only do you enjoy faster speeds, but other people connected to the same cell tower get faster speeds as well, even if they don’t have a Gigabit LTE device.
So yes, you do need Gigabit LTE. It can improve your average, real-world speeds, give you better speeds in weak signal conditions, and allow other people to enjoy faster speeds too.
Will mobile networks support these new speeds?
Here, again, the answer is “Yes.”
Fifteen mobile operators in 11 countries intend to launch or trial Gigabit LTE in 2017. They include: T-Mobile, Sprint, and AT&T in the U.S.; EE, T-Mobile Germany, Vodafone, and Telefonica in Europe; and NTT DoCoMo, SoftBank, KDDI, and SingTel in Asia.
And, of course, Telstra’s Gigabit LTE network is already live. We expect many more to come online over the next few years. It’s important to remember that many people are hanging on to their devices for longer. So even if on day one your network doesn’t support GB LTE, there’s a good chance it may over the lifetime of your phone.
2017 will be the year of Gigabit LTE. And with the right device, power users can enjoy next-gen experiences sooner than we expected.
Preliminary details and information about the wireless technology being developed for 5th generation or 5G mobile wireless or cellular telecommunications systems
With the 4G telecommunications systems now starting to be deployed, eyes are looking towards the development of 5th generation or 5G technology and services.
Although the deployment of any wireless or cellular system takes many years, development of the 5G technology systems is being investigated. The new 5G technologies will need to be chosen developed and perfected to enable timely and reliable deployment.
The new 5th generation, 5G technology for cellular systems will probably start to come to fruition around 2020 with deployment following on afterwards.
5G mobile systems status
The current status of the 5G technology for cellular systems is very much in the early development stages. Very many companies are looking into the technologies that could be used to become part of the system. In addition to this a number of universities have set up 5G research units focussed on developing the technologies for 5G
In addition to this the standards bodies, particularly 3GPP are aware of the development but are not actively planning the 5G systems yet.
Many of the technologies to be used for 5G will start to appear in the systems used for 4G and then as the new 5G cellular system starts to formulate in a more concrete manner, they will be incorporated into the new 5G cellular system.
The major issue with 5G technology is that there is such an enormously wide variation in the requirements: superfast downloads to small data requirements for IoT than any one system will not be able to meet these needs. Accordingly a layer approach is likely to be adopted. As one commentator stated: 5G is not just a mobile technology. It is ubiquitous access to high & low data rate services.
5G cellular systems overview
As the different generations of cellular telecommunications have evolved, each one has brought its own improvements. The same will be true of 5G technology.
First generation, 1G: These phones were analogue and were the first mobile or cellular phones to be used. Although revolutionary in their time they offered very low levels of spectrum efficiency and security.
Second generation, 2G: These were based around digital technology and offered much better spectrum efficiency, security and new features such as text messages and low data rate communications.
Third generation, 3G: The aim of this technology was to provide high speed data. The original technology was enhanced to allow data up to 14 Mbps and more.
Fourth generation, 4G: This was an all-IP based technology capable of providing data rates up to 1 Gbps.
Any new 5th generation, 5G cellular technology needs to provide significant gains over previous systems to provide an adequate business case for mobile operators to invest in any new system.
Facilities that might be seen with 5G technology include far better levels of connectivity and coverage. The term World Wide Wireless Web, or WWWW is being coined for this.
For 5G technology to be able to achieve this, new methods of connecting will be required as one of the main drawbacks with previous generations is lack of coverage, dropped calls and low performance at cell edges. 5G technology will need to address this.
5G specifications
Although the standards bodies have not yet defined the parameters needed to meet a 5G performance level yet, other organisations have set their own aims, that may eventually influence the final specifications.
Typical parameters for a 5G standard may include:
SUGGESTED 5G WIRELESS PERFORMANCE
PARAMETER
SUGGESTED PERFORMANCE
Network capacity
10 000 times capacity of current network
Peak data rate
10 Gbps
Cell edge data rate
100 Mbps
Latency
< 1 ms
These are some of the ideas being put forwards for a 5G standard, but they are not accepted by any official bodies yet.
Current research
There are several key areas that are being investigated by research organisations. These include:
Millimeter-Wave technologies: Using frequencies much higher in the frequency spectrum opens up more spectrum and also provides the possibility of having much wide channel bandwidth – possibly 1 – 2 GHz. However this poses new challenges for handset development where maximum frequencies of around 2 GHz and bandwidths of 10 – 20 MHz are currently in use. For 5G, frequencies of above 50GHz are being considered and this will present some real challenges in terms of the circuit design, the technology, and also the way the system is used as these frequencies do not travel as far and are absorbed almost completely by obstacles.
Future PHY / MAC: The new physical layer and MAC presents many new interesting possibilities in a number of areas:
Waveforms: One key area of interest is that of the new waveforms that may be seen. OFDM has been used very successfully in 4G LTE as well as a number of other high data rate systems, but it does have some limitations in some circumstances. Formats being proposed include: GFDM, Generalised Frequency Division Multiplexing, as well as FBMC, Filter Bank Multi-Carrier, UFMC, Universal Filtered MultiCarrier. Each has its own advantages and limitations and it is possible that adaptive schemes may be employed, utilising different waveforms adaptively for the 5G mobile systems as the requirements dictate. This provides considerably more flexibility for 5G mobile communications. Read more about 5G waveforms
Multiple Access Schemes: Again a variety of new access schemes are being investigated for 5G technology. Techniques including OFDMA, SCMA, NOMA, PDMA, MUSA and IDMA have all been mentioned. Read more about 5G multiple access schemes
Modulation: Whilst PSK and QAM have provided excellent performance in terms of spectral efficiency, resilience and capacity, the major drawback is that of a high peak to average power ratio. Modulation schemes like APSK could provide advantages in some circumstances. Read more about 5G modulation schemes
Duplex methods: There are several candidate forms of duplex that are being considered. Currently systems use either frequency division duplex, FDD or time division duplex, TDD. New possibilities are opening up for 5G including flexible duplex, where the time or frequencies allocated are variable according toth e load in either direction or a new scheme called division free duplex or single channel full duplex. This scheme for 5G would enable simultaneous transmission and reception on the same channel. Read more about 5G full duplex
Massive MIMO: Although MIMO is being used in many applications from LTE to Wi-Fi, etc, the numbers of antennas is fairly limited -. Using microwave frequencies opens up the possibility of using many tens of antennas on a single equipment becomes a real possibility because of the antenna sizes and spacings in terms of a wavelength.
Dense networks Reducing the size of cells provides a much more overall effective use of the available spectrum. Techniques to ensure that small cells in the macro-network and deployed as femtocells can operate satisfactorily are required.
Other 5G concepts
There are many new concepts that are being investigated and developed for the new 5th generation mobile system. Some of these include:
Pervasive networks : This technology being considered for 5G cellular systems is where a user can concurrently be connected to several wireless access technologies and seamlessly move between them.
Group cooperative relay: This is a technique that is being considered to make the high data rates available over a wider area of the cell. Currently data rates fall towards the cell edge where interference levels are higher and signal levels lower.
Cognitive radio technology: If cognitive radio technology was used for 5th generation, 5G cellular systems, then it would enable the user equipment / handset to look at the radio landscape in which it is located and choose the optimum radio access network, modulation scheme and other parameters to configure itself to gain the best connection and optimum performance.
Wireless mesh networking and dynamic ad-hoc networking: With the variety of different access schemes it will be possible to link to others nearby to provide ad-hoc wireless networks for much speedier data flows.
Smart antennas: Another major element of any 5G cellular system will be that of smart antennas. Using these it will be possible to alter the beam direction to enable more direct communications and limit interference and increase overall cell capacity.
There are many new techniques and technologies that will be used in the new 5G cellular or mobile telecommunications system. These new 5G technologies are still being developed and the overall standards have not yet be defined. However as the required technologies develop, they will be incorporated into the new system which will be defined by the standards bodies over the coming years.
Welcome – to the informational site for Gigabit Wireless Networking. We consider the available technologies for Gigabit Wireless Metropolitan Area Networks including:
Feel welcome to read our site and find out more about building modern, reliable and scalable Gigabit Wireless Networks for Wireless Metropolitan Area Networks (Wi-Man), 4G/LTE backhaul networks, Small Cell Backhaul, Corporate Networks and Campus and CCTV wireless networks.
We include technology introduction papers as well as usage cases to guide users in the very latest in Gigabit Wireless technology and deployment. Modern wireless products can reach 10Gbps or higher capacity.
Applications for Wireless
Gigabit Wireless networks are used in a wide range of applications which include
Safe Cities
Smart Cities
4G/LTE Backhaul Networks
Broadband Wireless
Last Mile Networks
Campus Sites
Corporate Networks
Education networks
Metro WiFi
Security and CCTV
If you are considering a wireless network with 10Gbps or higher capacity, please ask our team of experts who will be delighted to assist: